A Geometric Inequality for Convex Polygons

ResearchCommons/Manakin Repository

A Geometric Inequality for Convex Polygons

Show simple item record Ghandehari, Mostafa en 2010-06-09T16:06:00Z en 2010-06-09T16:06:00Z en 2001-05 en
dc.identifier.uri en
dc.description.abstract Consider a regular polygon with vertices P1, P2, , Pn. Assume P is an interior point. Let [see pdf for notation] denote the Euclidean distance from P to Pi, i = 1, ...., n. Let A denote the area of the polygon. It is shown that [see pdf for notation] special cases of the above inequality are proved for some nonregular convex polygons. An example is given to show that the above inequality is not true for a general convex polygon. en
dc.language.iso en_US en
dc.publisher University of Texas at Arlington en
dc.relation.ispartofseries Technical Report;345 en
dc.subject Convex polygon en
dc.subject Erdos-mordell inequality en
dc.subject Geometric inequalities en
dc.subject.lcsh Isoperimetric inequalities en
dc.subject.lcsh Mathematics Research en
dc.title A Geometric Inequality for Convex Polygons en
dc.type Technical Report en
dc.publisher.department Department of Mathematics en

Files in this item

Files Size Format View Description
MathTechReport345.pdf 274.1Kb PDF View/Open PDF

This item appears in the following Collection(s)

Show simple item record


My Account


About Us