Self-Circumference of Rotors

ResearchCommons/Manakin Repository

Self-Circumference of Rotors

Show simple item record O'Neill, Edward J. en Ghandehari, Mostafa en 2010-06-08T18:34:25Z en 2010-06-08T18:34:25Z en 1996 en
dc.identifier.uri en
dc.description.abstract The law of cosines from trigonometry is used to obtain elliptic integrals of the second kind to calculate the "self-circumference" of a Reuleaux triangle and the self-circumference of a rotor in an equilateral triangle. The Euclidean lengths of the polar duals of these sets with respect to their centers are expressed in terms of elliptic integrals of the second kind. Geometric inequalities for the polar duals of rotors in the plane are discussed. en
dc.language.iso en_US en
dc.publisher University of Texas at Arlington en
dc.relation.ispartofseries Technical Report;313 en
dc.subject Elliptic integrals of the second kind en
dc.subject Reuleaux triangle en
dc.subject Elliptic integrals of the second kind en
dc.subject Rotors en
dc.subject Elliptic functions en
dc.subject.lcsh Mathematics Research en
dc.title Self-Circumference of Rotors en
dc.type Technical Report en
dc.publisher.department Department of Mathematics en

Files in this item

Files Size Format View Description
MathTechReport313.pdf 617.3Kb PDF View/Open PDF

This item appears in the following Collection(s)

Show simple item record


My Account


About Us