RESEARCH COMMONS
LIBRARY

Nonexistence of Spatially Localized Free Vibrations for a Class of Nonlinear Wave Equations

ResearchCommons/Manakin Repository

Nonexistence of Spatially Localized Free Vibrations for a Class of Nonlinear Wave Equations

Show full item record

Title: Nonexistence of Spatially Localized Free Vibrations for a Class of Nonlinear Wave Equations
Author: Vuillermot, Pierre A.
Abstract: We prove the nonexistence of free vibrations of arbitrary period with polynomially decreasing profiles for a large class of nonlinear wave equations in one space dimension. Our class of admissible models includes examples of non integrable wave equations with certain polynomial nonlinearities, as well as examples of completely integrable ones with exponential nonlinearities related to Mikhailov's equations. Our result thus proves a particular case of a conjecture first formulated by Eleonskii, Kulagin, Novozhilova and Silin, and dispels some confusion regarding the relationship between the existence of so-called breather-solutions and the complete integrability of the wave equation. Our class of admissible nonlinearities also contains a particular instance of the nonlinear scalar Higgs' equation, but does not contain the Sine-Gordon equation which is known to possess a 27-periodic solution in time with exponential fall-off in the spatial direction. Our results may be considered as complementary to recent results by Coron and Weinstein. Our arguments are entirely global, and rest upon methods from the calculus of variations.
URI: http://hdl.handle.net/10106/2385
Date: 1985

Files in this item

Files Size Format View Description
MathTechReport241.pdf 622.5Kb PDF View/Open PDF

This item appears in the following Collection(s)

Show full item record

Browse

My Account

Statistics

About Us